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1 Overview

Information extraction aims to derive from free
text significant information related to a given
query (Hobbs, 2002). The ”Critical assessment
of text mining methods in molecular biology
(BioCreative)” is a community wide text min-
ing and information extraction contest. It is di-
vided into two major tasks, each composed by
further sub-tasks. While task 1 refers mainly
to named entity extraction of gene and protein
names, task 2 is concerned with functional an-
notation of gene products from free text and
is organized into four distinct sub-tasks. The
BioCreative sub-task 2.1, aims to extract pro-
tein annotations using full length biomedical ar-
ticles and taking Gene Ontology (GO) as refer-
ence. This means that for a given protein and
GO term, a text passage should be returned
where a traceable association between them is
provided. In order to participate in sub-task
2.1 we developed a method which returns text
passages associating a given protein to a GO-
term. It is based on a strong name identifica-
tion system, a catalog of GO related terms and
patterns, and statistics derived from a collec-
tion of sentences derived from information con-
tained in the Gene Ontology Annotation (GOA)
database. The system generates distinct sub-tag
sets or word lists for the query entities (protein
and GO term). Each sub-tag set has associated
a characteristic sub-tag score. To extract the
sentences participating in the annotation event
we used a sentence sliding window approach ap-
plying previously calculated sub-tag scores for
the protein and GO term sub-tag matches.

2 Methods

GOA dataset
The Gene Ontology Annotation database
(GOA) (Camon et al., 2004), contains a list
of associations were proteins are linked to GO
terms through scientific articles. Those articles

Figure 1: Flow chart of the construction of the
combined gene/protein and GO-term sentences sliding
scores.

contain text passages which describe the anno-
tated protein in context with GO terms.

We derived a ”training” dataset of 560 Med-
line abstracts were traceable author statements
(TAS evidence code) of protein annotations
are provided by the GOA database. Those
abstracts were used for further analysis for
each of the entities involved in the annotation,
namely the protein and the GO term. It is
important to take into account sources of noise
due to different annotation standards depend-
ing on accuracy of the manual annotation and



GO sub-tag set Gene sub-tag set

GO term (original) Gene name / symbol

NL-GO term Variants of Gene name

Externally linked terms Externally linked names

GO word tokens Gene name word tokens

GO definition tokens GOBO mutation term

GO co-occurence tokens GOBO sequence term

Table 1: The basic sub-tag sets for the GO entity class
and protein/gene entity class. For each sub-tag set a
stemmed and lower case converted version was also de-
rived.

the changes in the curation standards over
time. As curator annotation was performed
using full length articles, an additional problem
concerning the abstracts is that they might
not contain the passage of text relevant for
annotation extraction.

Protein/gene tag set
Protein or gene names form one of the entity
classes involved in the GO-annotation event.
In order to allow tagging of this entity at
different levels we constructed a manually
derived sub-tag system (see table 1). Each
sub-tag set contains a list of names, symbols
or word types associated with the specific
query protein. Among the sub-tag sets used
was the original gene/protein name, symbol
and identifier. Within textual sources the
protein symbol is often expressed in form of
typographical variants (Yeh et al., 2003). Thus
an other sub-tag set contained a list of protein
typographical variants obtained through a
manual rule based pipeline. Moreover using
cross references provided by other database
sources (HUGO, OMIM, SwissProt, UniGene,
LocusLink) allows extraction of protein name
synonyms, that were organized in a sub-tag
set containing a list of synonyms provided by
externally linked databases.
In order to take into account pragmatic context
information, the meronymic relations between
the protein and the terms contained in Global
Open Biology Ontologies (GOBO) dataset,
e.g. the terms referring to mutation events
and sequence ontology were incorporated as a
separate sub-tag set.

Gene Ontology term tag set
The lexical properties of GO (McCray et al.,
2002) were previously analyzed in order to
establish whether they are suitable for Natural

Language Processing (NLP) approaches. In
analogy to the gene/protein entity class also
a set of manually derived sub-tags for the
GO-term entity was constructed (see table 1).
Tagging of gene ontology terms is even more
cumbersome, as the way terms are expressed in
GO often does not correspond to the way they
appear in free text. This is especially the case
for certain terms within the categories molecu-
lar function and cellular component, which do
not correspond to natural language expressions.
A significant difference between the protein
symbols/names and the GO terms is that gene
names (symbols) correspond to proper nouns
while GO terms are adverbial nouns, which are
more difficult to identify in free text as they
often lack morphological characteristics present
in proper nouns. To modify GO terms in order
to reach a higher degree of resemblance to the
way they are used in free text, a rule based
system which converts an input GO term in
its corresponding ”NL-variants” was imple-
mented. This system carries out, besides minor
morphological changes, acronym substitution,
word token synonym substitution, collocation
shuffling and preposition insertions. A sample
NL-variant for the original GO term (GO-id
0000780) ”condensed nuclear chromosome/
pericentric region” would be ”pericentric region
of condensed nuclear chromosome”.

The Gene Ontology consortium also provides
synonyms and external links to terms and key-
words derived from other annotation databases
which were included as a separate sub-tag set.

Analysis of sub-tag sets using GOA
abstracts
Tagging of each of the entries belonging to the
sub-tag sets for the protein and the GO entities
was conducted for the GOA abstracts and their
average sentence occurrences was calculated
(see figure 2).

As the number of used GOA abstracts was
small and contained considerable noise, it con-
stitutes a not very representative text corpus.
Therefore we used it only as a rough guide to
derive the domain heuristic weighting scheme.
Nevertheless, the average occurrence of each
sub-tag reflects somehow its specificity. More
specific sub-tags were given a higher weighting
score then more general ones. The stemmed
versions of each sub-tag class have lower scores
compared to the original word/s.

The heuristic sub-tag score hi for each sub-tag



Figure 2: Average occurences of members of each sub-
tag set within GOA abstract sentences.
Gene name sub-tags, 1: original gene name provided
by GOA, 2: heuristic typographical variants of the
gene name, 3: variants extracted from links to exter-
nal databases, 4: word types which build up the gene
names, 5: word types which build up the external linked
gene names, 6 and 7: GOBO sequence ontology and mu-
tation event terms respectively.
GO-sub-tags, 1: original GO term, 2: NL-variant of
GO-term, 3: word types which build up the GO term,
4: word types which build up the GO-term definitions.
Note that not all the categories are displayed in the bar
diagram, co-occuring word types for GO-terms which
were extracted from PubMed sentences have an avergae
occurence in GOA abstract sentences of 11.3337254243.
Primed numbers correspond to lower case and stemmed
versions.

i was constructed as follows:

hi = ōi ∗ ei (1)

where ōi corresponds to the average number
of occurences of elements of sub-tag i in GOA
sentences and ei is the relative heuristic weight
used for sub-tag i based on domain knowledge.

Trapezoid sentence sliding window
Sliding window models have been widely used
in signal processing for analysis of frequent
items (Datar et al., 2002), in many bioin-
formatics applications related with sequence
analysis, e.g. (Sipos and vonHeijne, 1993)

and in statistical natural language processing
for collocation identification. We used an
“averaging sliding window” approach to extract
relevant information for intervals (windows) of
sentences units.

To calculate the average sentence score for
each of the entities over a fragment of text,
a trapezoid sentence sliding window was used.
The sentence position weight wi within the
trapezoid sliding window with length L (total
number of sentences forming the window) was
determined by

wi =

{

1 if 1 < i < L,

0.5 otherwise
(2)

Hence the flanking sentences comprising the
sliding window have a lower weight compared
to the central window sentences.

The average sentence score for each entity, H̄

can thus be calculated by

H̄ =

∑L
i=1 hiwi

L
(3)

where hi is the sum of the scores of the
matched sub-tags of the given sentence, wi is
its corresponding sentence position weight and
L is the sentence window size, in the case of
the entity profiles L=5 sentences.

Document Entity profiles
The entity sentence sliding windows result in a
protein and a GO-term document entity profile
respectively, when the sentence number is
plotted versus the average sentence score. Each
sentence has thus an entity score reflecting the
average sub-tag score for this sliding window
position. Those sentence scores can be used
to determine relevant text passages for each
entity. In general, the higher the sentence score
for a certain sentence, the more high scoring
sub-tags are matched on average for this entity
within the sentence window.

Document annotation profile
In order to extract the relation between the
entities, their profiles or sentence scores must
be combined into an unique profile, a combined
document annotation score reflecting the
relation between both entities involved in the
annotation. This is accomplished through a
combining sliding window, which in principle
is similar to the entity sliding windows. The
combining window size was reduced to L=4



Figure 3: Flow chart ilustrating the combination of the
distinct entity sentence scores. A: Trapezoid sentence
sliding window generates the average sentence scores
for each entity using the sub-tag scores of the matched
words (document entity profiles), B: The average sen-
tence scores of each entity are used to generate the com-
bined average annotation score using a second step slid-
ing window (document annotation profile), C: Selection
of the highest combined average annotation score, D:
Return sentences corresponding to the sentence window
with the highest combined average annotation score.

sentences and the flanking regions of the com-
bining sliding window have the same position
weight wi as the central sentence. We consid-
ered that semantic information expressing the
relation of two entities should be restrained to
a distance expressed in sentences.

The average annotation sentence score Ā of
this combined window is calculated as the sum
of the product of the entity sentence scores (H̄)
namely x̄i, for GO and ȳi for the protein, di-
vided by the window length L. If the average
annotation sentence score is plotted versus the
sentence number a document annotation profile
was obtained. For a sample output of a docu-
ment annotation profile, refer to figure 3.

The combined average annotation score Ā for
a given window position is thus given by

Ā =

∑L
i=1 x̄iȳi

L
(4)

The sentences comprising the highest scoring
window, namely the highest average annotation
sentence score, max Ā are returned as annota-
tion evidence text. Notice that the number of
returned sentences for annotation evidence is

Figure 4: Sample output of an annotation document

profile generated combining the entity document pro-
files: document sentence number vs combining annota-
tion score.

dependent on the combining window size.

3 Results

The test set provided for task 2.1. consisted
in full text articles of the Journal of Biological
Chemistry. The aim was to extract relevant pas-
sages of text for a given GO identifier, a Swis-
sProt accession number and the article identi-
fier. After low-level processing, junk formating
and parsing, a sentence splitting algorithm was
applied, indexing of sub-tags for each entity was
performed and then the annotation profiles and
highest scoring sentence window was calculated
as described in the methods section.

Protein/GO Prediction Category
Matches Low General High None Total

High 21.05 6.57 28.85 0 56.47

General 4.48 2.28 10.67 0 17.43
Low 12.10 4.10 8.19 0 24.39
None 0.10 0 0 1.61 1.71
Total 37.73 12.95 47.71 1.61 100

Table 2: Result summary for task 2.1. The table shows
the percentages of evaluated evidences organized by pre-
cision categories for proteins (rows) versus precision cat-
egories of GO terms (columns). The label corresponds
to, high: correct prediction, general: not totally wrong
prediction but too general to be really useful for protein
annotation (for GO-terms) and that the specific protein
is not there but a homologue from another organism or a
reference to the protein family is contained (for Protein),
low: means basically wrong. Total refers to the entity
extraction (protein or GO term) and None are not eval-
uated cases.

A total of 1076 text fragments were extracted



as candidate text annotation passages and sub-
mitted as evidences for GO annotation of pro-
teins. Out of those submissions 1050 were eval-
uated by expert curators (see table 2).

Within the assessment of the submissions,
also the extraction of the involved entities them-
selves was evaluated separately. About 56%
(594 evidences) of our predictions were assessed
as corresponding to high precision (correct) pro-
tein extraction and about 48% (501 evidences)
were evaluated as high precision GO-term ex-
traction.

GO-category Prediction Category
Matches Low Generally High None
Function 30.29 11.76 52.35 5.58

Component 28.10 14.59 56.21 1.08
Process 47.71 13.11 39.70 3.46

All 37.71 12.95 47.71 1.61

Table 3: Percentage of evidences per precision cate-
gories for the GO term entity extraction organized by
its corresponding GO-category.

A closer analysis of the evaluated GO terms,
revealed the existence of differences in predic-
tion performance depending on the associated
GO-category (see table 3). Within each GO-
category, the highest percentage of correct pre-
dictions corresponded to the category cellular
component, followed by the molecular function
category and in the biological process category.
The cellular component document profiles of-
ten show high average sentence scores, due to
matching of high scoring sub-tags (e.g. the
original GO term or its NL-variant). Scoring
of GO-terms belonging to the category biolog-
ical process was more difficult, this agrees to
previous attempts to identify process terms in
biomedical abstracts (Marquet et al., 2003). A
plausible reason might be the broad diversity of
describing biological processes, often colloqui-
ally expressed. In the case of annotation pre-
dictions, the highest number of accurately pre-
dicted associations corresponded to the GO cat-
egory molecular function. Cellular component
terms often are formed by word tokens which
can be used in other contexts this leads to an
increased number of false predictions.
We obtained an overall result of 28.8% (303 tex-
tual evidences) of high precision, predictions of
protein GO-annotations (see table 2). An ex-
ample of high precision annotation extraction
is displayed in figure 5, were the evidence text
relevant for the annotation was correctly iden-
tified.

<protein>

<namefile>JBC 2001−2\bc4501042445.gml<\namefile>

<idTask>2.1<\idTask>

<participant>user14<\participant>

<nameProtein><\nameProtein>

<dbId>O15023<\dbId>

<sourceDb>Swiss-Prot<\sourceDb>

<goCode>

<name>phosphatidylinositol binding<\name>

<code>0005545<\code>

<evidenceText>In addition, a single point mutation in the FYVE

finger motif at cysteine residue 753 (C753S) is sufficient to abolish

its endosomal association. Its endosomal localization is also sen-

sitive to the phosphatidylinositol 3-kinase inhibitor, wortmannin.

Using in vitro liposome binding assays, we demonstrate that Myc-

tagged endofin associates preferentially with phosphatidylinositol

3-phosphate, whereas the C753S point mutant was unable to do so.

We also show that endofin co-localizes with SARA but that they

are not associated in a common complex because they failed to co-

immunoprecipitate in co-expressing cells.<\evidenceText>

<\goCode>

<\protein>

Figure 5: Example output of a GO protein anno-

tation predicted with high precision.

Furthermore, cases where the protein entity was
evaluated as ’high’ and the GO term was evalu-
ated as ’generally’ constituted 6.57% of out sub-
missions.

4 Conclusions

It is generally believed that information extrac-
tion of relationships is more challenging when
compared to single entity extraction. This
is also reflected in the overall results of the
BioCreative task 2.1 result, and was previously
pointed out by Xie et al. (Xie et al., 2002). At-
tempts have been made to use automatic extrac-
tion of sentence patterns which could aid in an-
notation beyond the involved entity detections
(Chiang and Yu, 2003). In practice, evidence
relevant for protein annotations can often not be
detected by mere co-occurrence of the protein
entity and the annotation term within a single
sentence. We thus developed a method which
analyze text fragments in form of sliding sen-
tence windows, which allows to score whether
they contain relevant information for a given
entity. The obtained results of out method are
promising, but still some improvements could
be carried out, in particular related to the sub-
tag entity recognition. Also the window size
and entity sentence score combination could be
optimized.
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