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1. Overview 
 

Our approach to Task 1A was inspired by Tanabe 
and Wilbur’s ABGene system, described in Tanabe 
and Wilbur (2002a and 2002b).  Like Tanabe and 
Wilbur, we approached the problem as one of POS 
tagging, adding a GENE tag to the standard tag set.  
Where their system uses the Brill tagger, we used 
TnT, the Trigrams ‘n’ Tags HMM-based POS tagger 
described in Brants 2000.  We also made use of 
Schwartz and Hearst’s (2003) algorithm for 
abbreviation expansion.  We implemented a set of 
post-processing rules to account for the specifics of 
the BioCreative task definition.  We participated in 
both the “open” and the “closed” divisions; for the 
“open” division, we made use of data from NCBI. 
 
2. The tagger 
 

Past experience with the ABGene system in our 
lab suggested that the POS-tagging-based approach 
to entity identification is workable in the molecular 
biology domain.  We noted some problems with the 
ABGene system that we felt were due to the Brill 
tagger that forms its heart, and hypothesized that for 
these types of problems, an HMM tagger might 
provide better results.  Previous experiments with the 
TnT Trigrams ‘n’ Tags POS tagger, using the GENIA 
corpus for cross-validation, showed good results 
with no post-processing of the output.  The TnT 
system is a stochastic POS tagger, described in detail 
in Brants (2000).  It uses a second-order Markov 
model with tags as states and words as outputs.  
Transitions are defined over tags; outputs are 
predicted from the “most recent category.”  The 

probability of emitting a tag is calculated by: 
 

  T 
argmax (Π P(ti|ti-1, ti-2) P(wi|ti)) P(tT+1|tT)           (1) 
t1…tT  i=1 
 
Smoothing is by linear interpolation of uni-, bi-, and 
tri-grams, with λ estimated by deleted interpolation.  
Unknown words are handled by learning tag 
probabilities for word endings.  As a POS tagger, the 
system has been tested on two languages, viz. 
English and German.  It is publicly available at 
http://www.coli.uni-sb.de/~thorsten/tnt/.  We were 
impressed by its availability on a variety of platforms, 
its intuitive interface, and the stability of its 
distribution, which installed easily and never crashed.  
We trained it on the full training corpus and tested it 
on the devtest data set.  Performance of this system 
on the devtest data set, calculated by the BioCreative 
scoring software, was P = 67.8, R = 76.1, and 
F-measure = 71.7.   
 
3. Post-processing of the tagger’s output 
 
We applied a number of post-processing procedures 
to the output of the tagger.  Some of these were 
designed to deal with problems that arise on any 
definition of the problem, such as abbreviations and 
unknown words; others specifically address the 
BioCreative problem definition.  These 
post-processing steps led  to an increase from the 
level of performance of the tagger alone (P = 67.8, R 
= 76.1, and F-measure = 82.6) to P = 82.6, R = 82.5, 
and F-measure = 82.6 in the “closed” division, and P 
= 82.6, R = 83.5, and F-measure = 83.1 in the “open” 
division. 
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3.1 Abbreviations 
 
The tagger would sometimes recognize a full gene 
name but not its appositive parenthesized 
symbol/abbreviation, or vice versa.  We 
implemented Schwartz and Hearst’s (2003) 
algorithm to recognize abbreviations and their 
appositive definitions, such as Insulin-like growth 
factor 1 (IGF-1).  When one but not the other was 
tagged as GENE, we added the gene tag to the 
un-GENE-tagged member of the 
definition/abbreviation pair.   
 
3.2 Rule-based post-processing 
 

We used a number of rules to fix cases where the 
BioCreative task definition specified that a gene 
name should extend further to the right than the TnT 
tagger thought it should. 

 
3.2.1 “Keywords” 
 
If a word tagged as GENE is followed by a word 
such as gene, mutant, etc., and the following word is 
not tagged as GENE, then the tag on the following 
word is changed to GENE. 
 
3.2.2   Numbers and Greek letters 
 
If a word tagged as GENE is followed by a number, a 
Roman numeral, or a Greek letter, and that following 
number or letter is not tagged as GENE, then its tag 
is changed to GENE. 
 
3.2.3 Parentheses 
 
If a word is tagged as GENE and it is followed by a 
5-character-or-shorter stretch of parenthesized 
material, and that parenthesized material is not 
tagged as GENE, then its tag is changed to GENE. 

 
3.3 Statistically-based post-processing 
 
We used a small set of rules based on distributions of 
words in name-initial and name-final positions to 
modify the boundaries of multi-word gene names on 
the right and left edges.   
 
3.4 Dictionary-based post-processing in the 

“open” division 
 

In the “open” division, we made use of data from 
NCBI.  We applied this data just in cases where: 
 
• A word was not found in the statistical model, 

and 
• …it was tagged as a noun, and 
• …it was four characters or greater in length. 
 
We first looked for such words in LocusLink symbol 
fields.  If we found it in a LocusLink symbol field, 
then we tagged it as GENE.  If we did not find it in a 
LocusLink symbol field, then we queried the NCBI 
website through Entrez, specifying db=nucleotide 
and restricting our search to the gene name field.  If 
any items were returned by Entrez, then we tagged 
the word as GENE. 
 
4. Results on training and devtest data 
 
4.1   Overall 
 
We did five rounds of cross-validation, training on 
four subsets of the data and testing on a fifth.  We 
evaluated our results using the scoring software 
provided with the BioCreative data.  The resulting 
average precision and recall were .68 and .77 
without post-processing (i.e. just based on the 
output of the tagger).  The resulting average 
precision and recall were .82 and .81 with 
post-processing.  The averaged results of the 
cross-validation runs are shown in Figure 1.  
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Figure 1 Precision and recall for the
BioCreative training and devtest data. 
 
 
4.2  Term-level precision and recall 
 
Term-level scores (i.e., for performance on full gene 
names, analogous to the strict metric of Olsson et al. 
2002) were obtained using the BioCreative scoring 
software.  We evaluated performance both with and 
without post-processing.  Without performing 
post-processing, average precision and recall were 
.68 and .77.  When we then applied rule-based 
post-processing as described in 4.3 Postprocessing 
the BioCreative output above, average precision and 
recall were .82 and .81.  Post-processing improved 
both the precision and the recall, having a much 
larger effect on precision than on recall. 
 
4.3 Baseline, and normalizing for the 

difficulty of the task 
 
As a baseline for understanding the difficulty of the 
task, we determined the performance that would be 
achieved by simply assigning each word the most 
frequent tag seen with that word in the training set.  
This baseline strategy achieved an average precision 
of .39 and an average recall of .41—considerably 
worse than even our without-post-processing results. 
 
4.4   Per-token precision and recall 
 
We then determined the results on a per-word basis.  
This is equivalent to Olsson et al.’s protein name 
parts metric.  As would be expected, performance on 
single words is better than the term-level results, 
with an average precision of .88 and average recall 
of .79 without post-processing, and an average 
precision of .92 and average recall of .78 with 
post-processing.  Post-processing yielded some 
improvement in precision, although not of the 
magnitude observed for full gene names.  It actually 
degraded recall somewhat. 
 
4.5  Performance on unknown words 
 
For unknown words, average precision was .81 and 
average recall was .76 without post-processing.  
Average precision was .82 and average recall was .78 
with post-processing.  Post-processing yielded no 
improvement in performance for unknown words. 
 

4.6 Effect of term length on performance 
 
Figure 4 shows the effect of term length on precision 
and recall.  Again, there is no drastic drop in 
performance until names reach a length of 5 or more 
words. 

Effect of Term Length on Performance: 
BioCreative Data
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Figure 2  Effect of term length on performance
for the training and devtest data. 

 
 
 
4.7 Overall effects of rule-based 

post-processing 
 
The main effect of post-processing is an increase in 
precision.  For full gene names, average precision 
increased from .68 to .82, and average recall 
increased from .77 to .81.  On the level of individual 
words, post-processing had a much smaller, and not 
always positive, effect. 
 
5 Final scores on the test data 
 
Table 1 shows the results on the official test data.  It 
conforms closely to the results for our 
cross-validation runs on the training and devtest 
data. 
 
 TP FP FN P R F 
C 4767 1161 1182 .804 .801 .803 
O 4840 1187 1109 .803 .814 .808 
C 4858 1208 1091 .801 .817 .809 



O 4867 1213 1082 .800 .818 .809 
 
4 Conclusion 
 

The POS-tagging-based approach that we took 
from the ABGene system worked reasonably well, 
considering the small amount of training data 
available, and our results with the GENIA corpus 
suggest that it is robust with respect to different 
corpora and different problem definitions.  
Post-processing rules, both pattern-based and 
statistical, worked well to increase both precision 
and recall, with the F-measure rising from 71.7 
(without post-processing) to 82.6 (with 
post-processing) on the devtest data set.  
Domain-specific dictionaries were less helpful, 
giving an increase of only .5 in F-measure (to 83.1) 
compared to the 
post-processing-without-dictionaries approach. 
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