
Automatically Annotating Documents
with Normalized Gene Lists

Jeremiah Crim, Ryan McDonald and Fernando Pereira
Department of Computer and Information Science

University of Pennsylvania
Levine Hall, 3330 Walnut Street, Philadelphia, PA 19104

{jcrim,ryantm,pereira}@cis.upenn.edu

1 Introduction

Recently, researchers have begun to apply machine-
learning-based information extraction techniques to
biomedical text, most notably to identify gene and
chemical compound mentions [5, 7, 8]. A related
problem is gene normalization, which involves an-
notating a document (or abstract) with the list of
genes that are mentioned within it. Gene normal-
ization requires as input a synonym list. Each entry
in the list represents a specific gene and contains
both a unique identifier for that gene (known as a
normal form) and a set of different ways in which
the gene may be mentioned. Ideally this list will be
complete. However, in practice, gene mentions vary
widely and evolve over time. Table 1 contains a few
entries of the synonym list for the fly organism.

To facilitate gene normalization research, the or-
ganizers of BioCreative [1] have made available 5000
abstract/normalized-list pairs for three different or-
ganisms: fly, mouse and yeast. They also provided
extensive synonym lists for all three organisms.

It should be noted that gene normalization is both
easier and harder than identifying gene mentions. It
is easier because it does not require textual bound-
aries of each mention to be identified, but only that
some mention be detected and the document anno-
tated accordingly. On the other hand, gene normal-
ization is harder than identifying mentions in that it
requires the actual gene to be identified. The three
organisms under consideration, yeast, fly, mouse,
have from thousands to tens of thousands of genes.
Even if it were possible to identify every gene men-
tion with 100% accuracy, it would still be difficult
to disambiguate each mention given the number of
possibilities and the high degree of overlap among

Normalized Form Possible Synonyms
FBgn0003943 CG11624 Ub, Ubi p,

Ubi63E, polyubiquitin
FBgn0003944 CG10388 Cbx, DmUbx,

Hm, Ubx, abx, bithorax
FBgn0003945 Udg, Uracil DNA glycosylase

Table 1: Example entries in the fly synonym list.

synonym lists for different but related genes.
Section 2 describes some initial directions we con-

sidered. Section 3 describes a pattern-matching ap-
proach, and Section 4 a machine-learning approach
based on maximum-entropy classification. Section 5
compares the two methods.

2 Initial Directions

With the availability of highly accurate gene taggers
[7], one simple approach would be to extract all the
gene mentions from text and to match these men-
tions to the synonym list of each organism. How-
ever, there are many difficulties with that approach.
The primary problem is that mentions may be am-
biguous. For instance, the gene mention alcohol de-
hydrogenease is a valid synonym for 111 different
genes for the fly organism. Simply matching alcohol
dehydrogenease to all 111 genes would lead to a steep
decline in precision (since the mention is most likely
referring to only one specific gene). Second, the sys-
tem would be reliant on the accuracy of the gene
tagger. Our experiments showed that for mouse,
the gene tagger performed reasonably well on the
development data. However, for fly and yeast, the
tagger’s performance was less than useful. This is
most likely a result of the fact that the gene taggers
training data did not contain a sufficient amount of
examples for those organisms.

Another seemingly straightforward approach is to
treat the problem as multi-class document classifica-
tion. Here, each normalized gene form is a possible
classification and the goal is to classify each docu-
ment with some set of genes. We encountered two
major problems to this approach. Multi-class doc-
ument classification is typically done for tens and
in rare instances hundreds of classes. However, as
stated earlier, each organism has thousands of genes
and in some cases tens of thousands. This poses
substantial computation issues. Another major ob-
stacle is that not all classes are observed in the train-
ing data. Only 22%, 13% and 47% of all fly, mouse
and yeast genes are ever seen in the training data.
This would make it impossible to gather the suffi-
cient statistics needed to make accurate predictions.

3 Pattern Matching

Given a synonym list that is both unambiguous and
exhaustive, creating a normalized gene list would be
simple. We could simply match every occurrence of
a synonym in the text, and based on those matches
label the document with the corresponding normal-
ized mentions. Unfortunately, the synonym list for
this task has neither of the properties we desire. As
previously mentioned, many synonyms are ambigu-
ous, either occurring with multiple genes or in con-
texts where no gene mentions are present. But even
with these ambiguities, which increase greatly the
number of genes that a simple pattern matching sys-
tem would propose, using the synonym list doesn’t
retrieve all mentions.

This does not mean that a pattern matching ap-
proach is useless — our first system relies heavily
on standard techniques. However, we do not assume
that every synonym in the list reliably labels docu-
ments with their normalized gene mentions. Instead,
we prune each organism’s synonym list so that it
only contains synonyms that we believe will be in-
formative, based on labeled training documents. A
synonym, s, for a gene, g, is considered informative
if and only if for the training set D:∑

d∈D match(s, d)× labels(g, d)∑
d∈D match(s, d)

> δ

where match(s, d) = 1 if there is an exact match of s
in document d and 0 otherwise, and labels(g, d) = 1
if g is a member of document d’s gene list and 0
otherwise. The left-hand-side fraction is the condi-
tional probability of g labeling a document, given
that there was a match of s in the document. The
threshold δ was tuned to 0.4 on the development
data set.

While using a pruned synonym list performs sig-
nificantly better than simple pattern matching with
the original list, we still predict far too many genes
for each document. To further restrict the genes
considered, a second stage of the pattern matching
system produces, for each document, a set of candi-
date genes. Now, only genes that are present in the
candidate list for a document and are also associated
with an informative synonym in that document will
be added to the document’s final list.

For a document in the fly organism, the system
extracts the 1000 closest documents in the train-
ing data using a standard cosine distance metric.
The gene lists for the neighbouring documents are
merged to create the candidate list. For a document
in the mouse data, the system first tags the docu-
ment using a gene tagger [7]. Each gene mention is
then compared to every synonym in the mouse syn-
onym list. If the gene mention and a synonym have
a Jaro-Winkler similarity [4] greater than 0.85, then

fly Precision Recall F-measure
basic matching 0.033 0.861 0.063
informative syns 0.458 0.727 0.562
candidate list 0.709 0.667 0.687
stemming 0.713 0.690 0.701

mouse Precision Recall F-measure
basic matching 0.151 0.583 0.240
informative syns 0.478 0.548 0.511
candidate list 0.739 0.505 0.600
stemming 0.716 0.656 0.685

Table 2: Precision, recall and f-measure for the pat-
tern matching systems on devel. data. Each system
is a superset of the previous.

Organism Precision Recall F-measure
fly 0.638 0.695 0.665
mouse 0.830 0.673 0.743
yeast 0.950 0.894 0.921

Table 3: Precision, recall and f-measure for eval.
data with complete pattern match system.

the gene that synonym is associated with is added
to the candidate list for that document.

This two-stage pattern matching system compen-
sates for the fact that the given synonym list con-
tains large amounts of ambiguity, but does nothing
to reduce the number of gene mentions that a naive
pattern matching approach misses. We observe that
many of these omissions occur because of differences
in punctuation or morphology. Thus, the pattern
matching system includes a third, and final stage.
In it, all punctuation is removed and each token is
stemmed with the Porter stemmer [9], in both the
documents and the synonym lists. As before, each
informative synonym is compared to each document.
If the synonym matches and the corresponding gene
is in the candidate list for that document, then the
gene is added to that document’s final gene list.

Finally we will note that the yeast system required
neither a candidate list nor stemming to gain maxi-
mum performance.

Table 2 shows the performance for the different
stages of the system for the fly and mouse organisms.
Table 3 summarizes the final results of the system
on the evaluation data.

3.1 Shortcomings of Pattern Matching
It is rather surprising how well pattern matching
can do when one is smart about it. However, there
is something unsettling about this approach. First,
several parameters need to be adjusted on the de-
velopment data. These include δ as well as the vari-
ous parameters required to create the neighbour lists
(i.e. number of closest documents and the Jaro-
Winkler distance). For all hand-tuned parameters
there is the danger of overfitting to the development

data.
The complexity of the system is also a problem.

Data is transformed in many stages: stemming,
creating the informative synonym list, creating the
neighbour list and finally matching the synonyms to
the text. As with all pipelined systems this may
lead to cascading errors in which an error early in
the pipeline will cause errors to be made at later
stages.

A lack of uniformity between each organisms sys-
tem is also an undesirable trait. Particularly, neigh-
bour lists are generated differently for each organism
or not at all in the case of yeast. One could easily ar-
gue that the method will not generalize well to other
organisms. What we really desire is one uniform ap-
proach, for all organisms, in which every parameter
is automatically set during the training phase.

4 Match Classification

The inspiration for our second model comes from
the observation that liberal pattern matching from
the synonym list to the document can achieve a very
high recall (91%, 79% and 90% for fly, mouse and
yeast on the development data). The problem, as
addressed in the last section, is that this also results
in extremely poor precision. However, just as it is
possible to use the training data to determine which
synonyms are useful, it is also possible to use the
training data to determine which matches are good
and which are bad.

We present here a model that, given a set of syn-
onym matches, distinguishes those that are good
from those that are bad. This is essentially a bi-
nary classifier in which good matches are positively
labeled and bad matches negatively labeled. To cre-
ate training data for the classifiers, we matched ev-
ery synonym to each training document using a loose
matching criteria (punctuation and numbers were
ignored). We then extracted for each match, the
text that matched, some context of the match, the
normalized form causing the match, as well as the
number of other genes which matched that specific
piece of text. For the training data, if the normal
form for a match was in the normalized gene list for
that document, then the match was labeled positive.
Below are three example matches:

of drosophila Kinesin heavy chain attached to, FBgn0001308, 1, Y
was analyzed in trajectories with, FBgn0001250, 5, N
homeotic gene Ultrabithorax (ubx, FBgn0013100, 7, N

The italicized text is the text causing the match.
We extract two words before and after the match. In
the first example, the normalized form causing the
match is FBgn0001308, it was the only gene match-
ing that piece of text and it constituted an actual
match. Note that the third match, Utrabithorax, is
negative because it is actually a match for the gene

Organism Precision Recall F-measure
fly 0.704 0.784 0.742
mouse 0.787 0.731 0.758
yeast 0.956 0.881 0.917

Table 4: Precision, recall and f-measure for eval.
data with match classification model.

FBgn0003944, which shares the synonym Utrabitho-
rax with FBgn0013100.

This provided a large set of positive and negative
matches required to train a classifier. We used the
MALLET [6] implementation of maximum entropy
models [2] for our classifiers. Maximum entropy clas-
sifiers model the conditional probability of a class
given an input vector with the log-linear form:

P (y|x) =
e

∑
i λifi(y,x)

Z(x)

where y is a class (in our case Y or N), x is an in-
put vector and Z(x) is a normalizing term. For our
model x is a binary vector containing predicates on
the matched text, its context, the normal form caus-
ing the match and the number of other genes match-
ing the text. Each feature function fi(y,x) maps an
input vector and class to to a binary variable, for
instance:

fk(y, x) =

 1 if ContextBefore=drosophilia is true in x
& y = Y;

0 otherwise.

The parameters of the model are the feature
weights λi. Ideally one would like the weights of
features that tend to be on for correct classifications
to be strongly positive, the weights of features that
tend on for incorrect classifications to be strongly
negative, and the weights of uninformative features
to be zero. To accomplish this the parameters are set
to maximize the log-likelihood of the training data
T :

L(T) =
∑

(y,x)∈T

log P (y|x)

A Gaussian prior over weights, with variance
tuned to 1.0 on the development data, reduces the
danger of overfitting [3]. Optimal parameter values
are found by numerical optimization using a limited-
memory quasi-Newton methods, which guarantees
convergence to a global maximum for concave func-
tions like the penalized log-likelihood we use.

Results of the trained models on evaluation data
are shown in Table 4.1

1The evaluation results differ from the official BioCreative
2004 results. This is due to a match extraction error that was
discovered and resolved after the official results were submit-
ted.

5 Results and Discussion
Comparing Table 3 and Table 4, we see that maxi-
mum entropy classification does just as well or better
than the pattern matching system described in Sec-
tion 3. A primary advantage of maximum entropy
classification over pattern matching is that the sys-
tem is uniform across organisms, hence the method
is more likely to perform well when extended to dif-
ferent organisms.

There are many ways in which the maximum
entropy model can also be improved. The most
obvious of which is to include more expert knowl-
edge into the model. Maximum entropy models are
widely used since they easily allow for the integra-
tion of such expert knowledge through the definition
of new features. Currently, the model’s features are
based primarily on textual matching and contain
no domain specific information. Another potential
improvement would be to relax the criteria when
extracting matches. Under perfect conditions we
should be able to extract all good matches and use
the classifier to eliminate the bad ones. Currently
our matching criteria extracts as low as 80% of
all good matches, which bounds the recall of the
system. We are experimenting with different string
distance metrics proposed by Cohen et al. [4] to try
and raise the number of good matches returned.

Acknowledgments

The authors would like to thank Mark Liberman, Mark Man-

del, Andy Schein, Scott Winters and Pete White for useful

discussions and guidance. We are also very appreciative of

Andrew McCallum for making an early version of MALLET

available to us.

References
[1] A critical assessment of text mining methods in

molecular biology workshop, 2004.
http://www.pdg.cnb.uam.es/BioLINK/workshop BioCreative 04/

[2] A. L. Berger, S. A. Della Pietra, and V. J. Della
Pietra. A maximum entropy approach to natu-
ral language processing. Computational Linguistics,
22(1), 1996. 2001.

[3] S. F. Chen and R. Rosenfeld. A Gaussian prior for
smoothing maximum entropy models. Technical Re-
port CMU-CS-99- 108, Carnegie Mellon University,
1999.

[4] W. Cohen, P. Ravikumar & S. Fienberg. A Compar-
ison of String Distance Metrics for Name-Matching
Tasks, in IIWeb workshop, 2003.

[5] J. Kazama, T. Makino, Y. Ohta and J. Tsujii. Tun-
ing Support Vector Machines for Biomedical Named
Entity Recognition. In the Proceedings of the Natu-
ral Language Processing in the Biomedical Domain,
ACL, 2002.

[6] A. K. McCallum. “MALLET: A Machine Learning
for Language Toolkit.” http://mallet.cs.umass.edu
2002.

[7] R. T. McDonald and F. Pereria. Identifying gene
mentions in text using conditional random fields.
In A critical assessment of text mining methods in
molecular biology workshop, 2004.

[8] M. Narayanaswamy, K. E. Ravikumar, K. Vijay-
Shanker: A Biological Named Entity Recognizer.
Pacific Symposium on Biocomputing, 2003.

[9] Porter, M.F. An algorithm for suffix stripping, Pro-
gram, 14(3): 130-137, 1980.

